Gauge-boson Physics with ATLAS at the LHC

with an emphasis on: Triple Gauge-boson Couplings and Monte Carlo Techniques for QCD Corrections

Matt Dobbs

Lawrence Berkeley Laboratory, USA (U. Victoria, Canada)

Outline

- LHC & the ATLAS Detector
 - Performance example: Hadronic Endcap Calorimeter
- Gauge-boson Physics
 - Measuring A_{FB} and $\sin^2\theta_W$
- Modeling our Predictions:
 - \bullet New Monte Carlo Techniques for combining NLO($\alpha_{\rm S}$) matrix elements with the parton shower
 - sketch of problem to be solved, results & implications (but no details)

Testing the SM with Triple Gauge-boson Couplings

Physics Division

History of the universe

-You are here

←NOW (15 Billion years)

- ←Stars form (1 Billion years)
 - Cosmic Microwave Background
- Atoms Form (300 000 years)
- ←Nuclei Form (180 seconds)
- ←Protons and Neutrons Form (10⁻¹⁰ sec)
- ←Quarks Differentiate (10⁻³⁴ sec?)

LHC probes physics relevant to the universe at age 10^{-14} sec.

- Multi-purpose detector for LHC >~1850 People
- 22 m diameter, 7000 tons

Physics Division

- >149 Institutions, 34 Countries
- >37 Funding Agencies

Multi-purpose detector for LHC >~1850 People

22 m diameter, 7000 tons

Physics Division
BERKELEY LAB

>149 Institutions, 34 Countries

>37 Funding Agencies

Magnet System

- · 2T Solenoid surrounds inner detector (no field at calorimeters)
- 3.9 4T air core toroids for muon system

Magnet System

... provides names for the LHC expts

A Toroidal LHC ApparatuS

VS. Compact Muon Solenoid

$$\frac{\sigma}{P_T} = \frac{P_T(GeV)}{2000} \oplus 0.01$$

Inner Tracker

- Silicon pixels and strips
 - transition radiation tracker with e/π separation capabilities

Transition Radiation

Tracker

Pixel Detectors

EM Calorimeters

$$\frac{\sigma}{E} = \frac{10\%}{\sqrt{E(GeV)}}$$
Hadron Calorimeters

Pb/LAr

Barrel: Fe / Scintillating Tiles

Cathode strip

chambers

(Air Core) Muon Spectrometer

monitored drift tubes and cathode strip chambers (precision tracking)

- resistive plate chambers and thin gap chambers (fast triggering)
- Good standalone performance

$$\frac{\sigma}{P_T} \cong 2 - 3\%$$
 for $P_T < 1 \text{ TeV}$

Resistive plate

 Subdetector collaborations are busy calibrating, evaluating and understanding their detectors in beam tests.

Example: Hadronic Endcap Calorimeter

HEC Beam Test

1 wheel constructed at Dubna (Russia) and assembled at MPI, Munich

Tested in CERN SPS $e/\mu/\pi$ beams,

998-2001

Matt Dobbs <MADobbs@lbl.gov> Gauge Boson PI

announcing the first LHC discovery

Gauge-boson Physics

Drell-Yan lepton pair production

(2 Nobel prizes... so far, 30 years of Drell Yan measurements)

 $L \rightarrow$ channel for large extra Dimensions, Z'

- \odot probe proton structure: parton density functions at small x
- Calibrate the detector
 - EM energy & momentum scale from $pp \rightarrow Z^{\circ} \rightarrow l^{+}l^{-}$
 - jet energy scale from pp \rightarrow Z° + jet \rightarrow |+|-+ jet
 - luminosity from pp \rightarrow Z° , W^{\pm} event rate
 - → Important!, our knowledge of this process feeds into the systematic errors for all physics measurements and searches
- Key Precision Measurements of fundamental SM parameters

 $sin^2\theta_W$, Mass(W)

 \rightarrow let's explore the $\sin^2\theta_W$ example...

Measuring sin²θ_w with A_{FB}

- pp→ l⁺l⁻ di-lepton signature is (almost) background free
- asymmetry arises from interference between neutral currents $\frac{d\sigma}{d\Omega} \propto \left| \gamma^* + Z^o + (\text{New Physics!?}) \right|^2$

constrains M_{HIGGS} and checks model consistency

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = b \left(a - \sin^2 \theta_{eff}^{lept} (M_Z) \right)$$
known to NLO in EW, QCD (effects can be as large as 30%)

Measuring sin²θ_w with A_{FB}

but for symmetric proton-proton beams (LHC), there is no asymmetry WRT the beams.

Measuring $\sin^2\theta_{\rm W}$ with $A_{\rm FB}$

instead, we "sign" the forward direction by the l⁺l⁻ boost.

- measure asymmetry in charged lepton direction WRT CMS boost direction
- Asymmetry increases at high Y(1+1-)

Measuring $\sin^2 \theta_W$ with A_{FB}

Statistical precision using 100 fb⁻¹, near Z-pole (±6GeV)

Cuts	A _{FB} (%)	Δ A _{FB} (%)	$\Delta \sin^2\theta_{\rm eff}(M_Z)$
Both e±, n <2.5	0.774	0.020	0.00066
One e±, n <2.5	1.98	0.018	0.00014
other e±, n <4.9			

ATL-PHYS-2000-018 Sliwa, Riley, Baur

for comparison, $\Delta \sin^2\theta_{\text{eff}} = 0.00053$ combining 4 LEP expts and e, μ , τ channels [CERN-EP/2001-098]

Performance issue:

increasing forward lepton tagging acceptance greatly improves measurement

systematic PDF uncertainty is most challenging.

Modeling our Predictions: New Monte Carlo Techniques for QCD corrections

the real challenge for M.C. authors is modeling subtle Standard Model effects... new physics is (usually) easy!

Simulating QCD Corrections 2 common approaches

Showering event Generators

(Pythia, Herwig, Isajet)

Physics Division

Next-to-leading order

"event integrators"

Simulating QCD Corrections

Showering Event Generators

- Event generation is probabilistic... freq predicted by theory.
- exclusive predictionyou get the whole event record
- all orders approximation of multiple emissions
- valid in soft/collinear emission regions
- 13 not valid for hard, well separated partons
- Normalization is LO

NLO Matrix Elements

- good prediction of hard central emissions
- best prediction of total σ
- 8 one order in as →at most one "jet"
- 6 fixed order perturbation is not valid for small P_{T} (jet)
- 8 event weights are negative (unphysical) in some phase space regions

Phase Space Veto Method

Implemented as an event generator for

$$p\overline{p} \rightarrow Z^0 + X \rightarrow 1^+1^- + X$$

but everything applies in general to any colour singlet production process at hadron colliders

(Matt: Click here if you are short on time!)

NLO 'event integrators' pp \rightarrow Z+X \rightarrow 1⁺1⁻+X

Regularization scheme example:

Phase Space Slicing

("S_{MIN} slicing")

- partition phase space:
 - resolved region: integrated numerically •
 - unresolved region: integrated analytically
- programmed as two separate generators

$$\sigma^{n}(S_{MIN}) + \int_{S_{ik} > S_{MIN}} \sigma^{n+1}(\Phi_{+1}) d\Phi_{+1} = \text{Const}$$

 \rightarrow can choose (almost) any S_{MIN} we like.

Phase Space Veto Method

Dobbs, Phys.Rev.D64,034016 (2001), Phys Rev D65,094011 (2002) **Pötter,** Phys.Rev.D 63,114017 (2001) [DIS]

Recall: \rightarrow can choose (almost) any S_{MIN} we like

$$\sigma^{n}(S_{ik}) + \int_{S_{ik} > S_{MN}} \sigma^{n+1}(\Phi_{+1}) d\Phi_{+1} = \text{Const}$$

$$\text{choose } S_{\text{ZERO}}$$

i.e. unresolved contribution, $\sigma^{n}(S_{ZERO})=0$ on an event-by-event basis.

Addresses the first issue, because it carves out the region of negative weights \rightarrow i.e. it allows us to re-formulate the NLO calculation into a true (probabilistic) event generator. -> while maintaining the reduced scale dependence provided by the NLO calculation.

Phase Space Veto Method: shower evolution

- our description of the hard central region is dominated by the NLO matrix elements
- ideally, we want the small P_T region to be the domain of the Parton Shower

Phase Space Veto Method

- event generator in the true sense
- → you get unweighted events
- \rightarrow well suited for expt. applications:
 - detector simulation,
 - hadronization, etc.
- dominated by parton shower in the soft/collinear regions
- dominated by O(α_S) matrix
 element in hard/central regions
- normalization is NLO, maintains reduced scale dependence.

Phase Space Veto Method

- attacks a phenomenological issue from an experimental viewpoint
- implemented as a new $pp \rightarrow Z^0/\gamma^* + X \rightarrow l^+l^- + X$ event generator
 - see Dobbs, Phys Rev D65,094011 (2002)
 - (uses LUND parton shower)
 - @ efficiency and event generation time competes with L.O. generators
 - @ another step towards modularized event generators (HepMC, HepUP)
 - written in Object Oriented C++
- preliminary results indicate there will be further benefits for more complicated processes like diboson production. [see Dobbs, Phys Rev D64,034016 (2001)]
- The phenomenology community is listening!

 - ➡ Minami-Tateya (KEK) group (GRACE), Yoshimasa Kurihara, pp

 → Z+X

... Modeling our Predictions
New Monte Carlo Techniques
for QCD corrections

Probing the Triple Gauge-boson Couplings

- non-abelian SU(2), ×U(1) v gauge group (foundation of SM!)
 - → WWy WWZ couplings

most-general C & P conserving WWZ, WWY vertices are specified by just 5 parameters:

- → model independent parameterization
- Probe tool: sensitive to low energy remnants of new physics operating at a higher scale
- **complement** to direct searches

Probing the Triple Gauge-boson Couplings

theoretical expectation for new physics at 1 TeV

anomalous TGC's at most for new physics at 1 TeV [hep-ph/9503425 DPF]

$$\mathcal{O}\left(\frac{M_W^2}{\Lambda_{N,P}^2}\right) \approx \mathcal{O}(0.01)$$

LEPCombined, ICHEP2000 & Tevatron Expected, RunII

probe the WWZ, WW γ vertices with *leptonic* decay channels of WZ and W γ production

$pp \rightarrow W^{\pm} \gamma \rightarrow l^{\pm} \nu \gamma$

Wy production at LHC

Consider leptonic decay channels only: etvy,

Number of Events for 30 fb⁻¹

							$W \rightarrow$	$W\gamma \rightarrow$	All	$W\gamma$	
	$Z\gamma$	$W+\mathrm{jet}$	Z+jet	$t\bar{t}(\gamma)$	$b\bar{b}(\gamma)$	$\gamma+{\rm jet}$	$l\nu\gamma$	$\tau \nu \gamma$	Backgrounds	Signal	$\frac{S}{B}$
preselection	2436	4367	7398	1561	253	956	20	710	17701	17717	1.0
$P_{\gamma}^T > 100 \text{ GeV}$	1277	2097	2101	945	160	894	14	665	8153	10638	1.30
$P_{l^{\pm}}^{T} > 25 \text{ GeV}$	1196	1938	1800	837	64	664	13	586	7098	10066	1.42
$P_{\rm miss}^T > 25 { m GeV}$	377	1557	215	689	43	44	12	574	3511	7311	2.08
$\Delta R(\gamma, l^{\pm}) < 1$	376	1543	183	611	42	44	12	574	3385	6791	2.01
$\Sigma_{\mathrm jets} \vec{P_{\mathrm jet}_i} < 100 \; \mathrm{GeV}$	341	1280	133	286	26	11	12	534	2623	4262	1.62

jets faking photons is largest background → highlights particle ID performance

Backgrounds: $LO \times (k=1.5)$

Signal: NLO(a_s)

cuts designed for purity are optimized at LO cuts which isolate the phase space where TGC diagrams dominate

(i.e. address $\mathfrak{O}(\alpha_s)$ effects) are chosen so as to optimize the confidence limits.

Matt Dobbs <MADobbs@lbl.gov> Gauge Boson Physics @ LHC Rochester Seminar, Oct 29, 2002

unlike the Tevatron,

 $W \rightarrow \tau \nu$ is significant

background for LHC

Matt Dobbs <MADobbs@lbl.gov> Gauge Boson Physics @ LHC Rochester Seminar, Oct 29, 2002

Backgrounds to WZ production

Number of Events for 30 fb⁻¹

	# events						Spread in Stat.		
	Backgrounds		All	WZ		95% C.L.		Ĺ.	
	Z+jet	ZZ	t ar t	Backgrounds	Signal	$\frac{S}{B}$	λ_z	$\Delta \kappa_Z$	Δg_Z^1
preselection	631	576	745	1952	3663	1.88	0.014	0.29	0.020
3 leptons, $P_{l^{\pm}}^{T} > 25 \text{ GeV}$	398	500	461	1359	3285	2.42	0.014	0.29	0.020
$P_{\mathrm{miss}}^T > 25 \; \mathrm{GeV}$	3.2	90	357	450	2453	5.44	0.014	0.28	0.019
$ M_{l^+l^-} - M_Z < 10 \text{ GeV}$	2.8	76	65	144					0.020
$\Sigma_{\rm jets} \vec{P_{\rm jet}}^T < 100 {\rm GeV}$	2.5	72	44	119	1987	16.7	0.013	0.23	0.016

almost background free

- Backgrounds: LO × (k=1.5)
- Signal: NLO(a_s)

statistical limits depend very weakly on obtaining good purity.

* bb and Zy backgrounds are negligible

Extracting the confidence intervals

- binned max. likelihood fit to $P_{\tau}(V)$ distribution
 - robust \rightarrow no need to reconstruct CMS vectors
 - directly measured
- investigated:
 - optimal observables
 - multi-variant fits $[P_{\tau}(V) \times P_{\tau}(\not =_{W}) \text{ is best}]$
 - other 1-D distributions
- luminosity systematic avoided by considering distribution shapes only

Limits vs. Integrated Luminosity

- •Statistics will dominate LHC measurements (except for Δq^1) \rightarrow sensitivity derived from a few events in the high $P_T(V)$ tail
- Dominant systematics are theoretical:
 - →neglected higher orders and pdf's
- Systematics reported here are worst case scenario,
 - \rightarrow assumes we are unable to correct for the mis-modeling.

What can we do if we observe anomalous couplings??

→LHC will have sufficient statistics to measure the form factor behavior (energy dependence) of anomalous couplings.

- specific production angle of the photon is forbidden by subtle gauge cancellations
- one of very few remaining electroweak discoveries
- normal statement "Tevatron has a distinct advantage because of the asymmetric beams."
- → borrow the (Drell-Yan) idea of signing forward direction by the system boost.

Radiation Zero

Triple Gauge-boson Couplings:

RESULTS & Summary

- 95% Confidence Intervals are:
 - limits derived by averaging over 5000 "mock" ATLAS expts.
 - typically order of magnitude improvement over LEP / Tevatron
- statistically limited measurement (!)
 - sensitivity from a few events in high P_{T} tail (except Δg^{1}_{7} , for which systematics & statistics are comparable)

$$-0.0035 < \lambda_{\gamma} < +0.0035$$

$$-0.0073 < \lambda_{\rm Z} < +0.0073$$

$$-0.075 < \Delta \kappa_{\gamma} < +0.076$$

$$-0.11 < \Delta \kappa_{\rm Z} < +0.12$$

$$-0.0086 < \Delta g^{1}_{Z} < 0.011$$

For 30 fb⁻¹, systematics included.

- theoretical errors dominate the systematics
 - "tools" for controlling these systematics have been developed, not discussed here.
- new means of ensuring unitarity developed (not discussed here)
- measurements of anomalous couplings as a function of energy will be possible.

Conclusions

- ATLAS is under construction.
 - performance requirements are being met in beam tests.
 - physics studies drive the performance goals.
- ATLAS physics potential includes competitive precision electroweak measurements: sin²θw, mass(W), TGCs,...
- new Monte Carlo techniques for combining NLO(α_S) matrix elements with the parton shower approach have been developed → excellent tool for (by!) experimentalists.
- Triple Gauge-boson couplings probe the very foundation of the Standard Model.
 - measurements will be statistically limited, even at LHC
 - order of magnitude improvement in confidence limits over previous expts.
 - new means of ensuring unitarity (form factors) has been introduced (not discussed in this talk, ask if you're interested)

